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Abstract

An overview of the piezoelectric activity in amorphous piezoelectric

polymers is presented. The criteria required to render a polymer

piezoelectric are discussed. Although piezoelectricity is a coupling

between mechanical and electrical properties, most research has

concentrated on the electrical properties of potentially piezoelectric

polymers. In this work, we present comparative mechanical data as a

function of temperature and offer a summary of polarization and

electromechanical properties for each of the polymers considered.

Introduction

Kawai's [1] pioneering work almost thirty years ago in the area of piezoelectric polymers has led to the

development of strong piezoelectric activity in polyvinylidene fluoride (PVDF) and its copolymers with

trifluoroethylene and tetrafluoroethylene. These semicrystalline fluoropolymers represent the state of the

art in piezoelectric polymers. Research on the morphology [2-5], piezoelectric and pyroelectric properties

[6-10], and applications of polyvinylidene fluoride [11-14] are widespread in the literature. More recently

Scheinbeim et al. have demonstrated piezoelectric activity in a series of semicrystalline, odd numbered

nylons [15-17]. When examined relative to their glass transition temperature, these nylons exhibit good

piezoelectric properties (d_l = 17 pC/N for Nylon 7) but have not been used commercially primarily due to
the serious problem of moisture uptake. In order to render them piezoelectric, semicrystalline polymers

must have a noncentrosymmetric crystalline phase. In the case of PVDF and nylon, these polar crystals

cannot be grown from the melt. The polymer must be mechanically oriented to induce

noncentrosymmetric crystals which are subsequently polarized by an electric field. In such systems the

amorphous phase supports the crystalline orientation and polarization is stable up to the Curie

temperature.

Nalwa et al. have also examined piezoelectricity in a series of polythioureas [18-19]. Though not

highly crystalline, these thiourea polymers have a very high degree of hydrogen bonding which stabilizes

the remanent polarization in such systems after poling.

The literature on amorphous piezoelectric polymers is much more limited than that for semicrystalline

systems. This is in part due to the fact that no amorphous piezoelectric polymers have exhibited

responses high enough to attract commercial interest. Much of the previous work resides in the area of

nitrile substituted polymers including polyacrylonitrile (PAN) [20-22], poly(vinylidenecyanide

vinylacetate) (PVDCN/VAc) [23-26], polyphenylethernitrile (PPEN) [27-28], and poly(1-

bicyclobutanecarbonitrile) [29]. The most promising of these materials are the vinylidene cyanide

copolymers which exhibit large dielectric relaxation strengths and strong piezoelectricity. The carbon-

chlorine dipole in polyvinylchloride (PVC) has also been oriented to produce a low level of

piezoelectricity [30,31]. Motivated by a need for high temperature piezoelectric sensor materials, NASA

has recently begun research in the development of amorphous piezoelectric polymers. In this paper an

amorphous, aromatic piezoelectric polyimide developed at NASA [32] is presented along with other

amorphous and paracrystalline piezoelectric polymers shown in Table 1. The purpose of this overview is

to explain the mechanism and key components required for developing piezoelectricity in amorphous

polymers and to present a summary of polarization and electromechanical properties of currently
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researched amorphous systems.

Table 1. Structure, Morphology and Tg for Piezoelectric Polymers.

Polymer Repeat Unit Morphology Tg (°C)
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Background

The piezoelectricity in amorphous polymers differs from that in semi-crystalline polymers and

inorganic crystals in that the polarization is not in a state of thermal equilibrium, but rather a quasi-stable

state due to the freezing-in of molecular dipoles. As mentioned by Broadhurst and Davis [33], four

criteria are essential to make an amorphous polymer exhibit piezoelectric behavior. First, molecular

dipoles must be present. As seen in Table 1, these dipoles are typically pendant to the polymer backbone

as are the nitrile groups in PAN, PVDCN-VAC, and (_-CN) APB/ODPA. However, the dipoles may also

reside within the main chain of the polymer such as the anhydride units in the (_-CN) APB/ODPA

polyimide. In addition to a dipole moment B, the dipole concentration N (number of dipoles per unit
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volume)isalsoimportantindeterminingtheultimatepolarization,Pu,of apolymer,

P=N_t (1)

Equation(1) is for a rigid dipolemodelandgivesa maximumvaluefor thepolarizationwhich
assumesalldipolesareperfectlyalignedwiththepolingfield.Table2 listssomeamorphouspiezoelectric
polymersalongwith ultimatepolarizations,remanentpolarizations,and calculatedand measured
dielectricrelaxationstrengths,Ae. Thedielectricrelaxationstrengthis definedasthechangein dielectric
constantasthepolymertraversestheglasstransitiontemperature.SemicrystallinePVDFis addedfor
comparison.

Table2. PolarizationDataforsomeAmorphousPiezoelectricPolymersandPVDF.

Polymer p N Pu" Aeb Ae° p........d
(1030Cm) (102sm3) (mC/m2) calculated measured (mC/m2)

PVC 3.7 1.33 50 7.0 10.0 16.0

(Ep 32 MV/m)
PAN 11.5 1.48 170 35.0 38.0 25.0

PVAc 6.0 0.83 50 6.6 6.5 5.0

PVDCN/VAc 19.0 0.44 84 30.0 125.0 50.0

PPEN 14.0 0.37 52 12.0 12.0 10.0

(_-CN)
APB/ODPA 29.5 0.14 40 23.0 17.6 14.0

PVDF 7.0 18.40 130 40.0-55.0

P/Pu
(%)
32

17

10

60

19

35

30-42

"Calculated using equation 1.

bAe is calculated by equation 2.

c Ae is measured as (e ,bovoTge belowTg)"

dPr is file actual polmization in file polymer, measured by file fllemlally stinmlated current mefllod,

or hysteresis measurements in fl_ecase of PVDF.

The importance of dipole concentration on ultimate polarization is evident from a comparison of

polyacrilonitrile (PAN) and the polyimide ([3-CN) APB/ODPA. PAN has a single nitrile dipole per repeat

unit (g = 3.5D) resulting in a dipole concentration of 1.34 x 1028 m _. This translates into an ultimate

polarization of 152 mC/m 2 [20]. The ([3-CN) APB/ODPA polyimide, on the other hand, has a single

nitrile dipole pendant to a phenyl ring (g = 4.2 D), as well as two anhydride dipoles (g = 2.34 D)

resulting in a total dipole moment per monomer of 8.8 D [34]. However, the dipole concentration of ([3-

CN) APB/ODPA is only 0.136 x 1028 m _, resulting in an ultimate polarization of 40 mC/m 2, which is less

than a fourth of that of PAN.

The second criterion for piezoelectricity is the ability to align the dipoles. Orientation polarization of
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molecular dipoles is responsible for piezoelectricity in amorphous polymers. It is induced by applying an

electric field (Ep) at an elevated temperature (Tp > T) where the molecular chains are sufficiently mobile
to allow dipole alignment with the electric field. Partial retention of this orientation is achieved by

lowering the temperature below T in the presence of Ep as shown in Figure 1. The resulting remanent

polarization (Pr) is directly proportional to Ep and the piezoelectric response. The procedure used to
prepare a piezoelectric amorphous polymer clearly results in both oriented dipoles and space or real

charge injection. The real charges are usually concentrated near the surface of the polymer as
schematically shown in Figure 2, and they are introduced due to the presence of the electrodes. However,

Broadhurst et.al. [35] have shown that the presence of space charges does not have a significant effect on

the piezoelectric behavior. The reason for this is two fold. The magnitude of the space charges is usually

not significant with respect to the polarization charges. Secondly, space charges are essentially

symmetrical with respect to the thickness of the polymer therefore when the material is strained uniformly

their contribution to the piezoelectric effect is negligible. A number of authors have demonstrated this by
use of phenomenological models [33,35].

A study of the relationship between relaxation times, poling temperatures and poling fields is crucial

to achieve optimal dipole alignment. Theoretically, the higher the electric field, the better the dipole

alignment. However, the value of the electric field is limited by the dielectric breakdown of the

polymeric material. In practice, 100 MV/m is the maximum field that can be applied to these materials.
Poling times need to be of the order of the relaxation time of the polymer at the poling temperature. It is

unlikely that a high degree of alignment is achievable in amorphous polymers as evidenced by P/Pu data

in Table II. Using computational chemistry techniques the orientation polarization of the ([3-CN)

APB/ODPA polymer has been assessed by monitoring the angle, @,that the dipoles make with the applied

electric field [34]. The unpoled state is found to exhibit random orientation of the dipoles, @ = 90 °, as

shown in Figure 3a. Upon poling, the nitrile and anhydride dipoles are perturbed by the electric field to

form average angles of O = 50 ° and O = 63 °, respectively, Figure 3b. As shown in Table 2, for most

polymers the ratio of measured remanent polarization to the calculated ultimate polarization is 30%.

When local ordering or paracrystallinity is inherent in the polymer or is induced by mechanical

stretching, an increase in the value of the remanent polarization is observed. For example, some

researchers [23, 36, 37] assert that the large discrepancy between the measured and calculated Ae for

PVDCN-VAc (Table 2) may be attributed to locally ordered regions in the polymer. A number of authors

have suggested that PVDCN-VAc also exhibits ferroelectric-like behavior [38] due to switching of the

nitrile dipoles under AC-field. Several investigators [20, 33, 39] have proposed that the difficulty of

poling PAN in the unstretched state is related to the strong dipole-dipole interaction of nitrile groups of

the same molecule which repel each other, thus preventing normal polarization. Upon stretching, the

intermolecular dipole interactions facilitate the packing of the individual chains and give rise to ordered

zones [39]. Comstock et al. [40] measured the remanent polarization of both unstretched and stretched

PAN using the thermally stimulated current method (TSC) and observed a two-fold increase in the

remanent polarization (TSC peak at 90ac) for PAN that was stretched four times its original length.

The third criterion for making an amorphous piezoelectric polymer is the locking-in of dipole

alignment and its subsequent stability. As explained earlier, the temperature is lowered to room

temperature while the field is still on, to freeze in the dipole alignment. In a semi-crystalline material,

however, the locking-in of the polarization is supported by the crystalline structure of the polymer, and is

therefore stable above the glass transition temperature of the polymer. It is for that reason that PVDF (Tg
= -35 ° C) can be used from room temperature to about 100 a C. In semi-crystalline materials,

piezoelectricity remains until the Curie temperature is reached. Although there is little data addressing

the stability of piezoelectric activity in amorphous polymers, the general effect of time, temperature and

pressure has been noted. Broadhurst and Davis [33] state that as temperature decreases the structural
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relaxation time of PVC increases rapidly to the order of years at room temperature. This is probably the

case for most of the polymers mentioned in this discussion. It has been shown by TSC measurements that

the remanent polarization of ([3-CN) APB/ODPA is stable when heated at l°C/min up to 200°C, where

over 80% of the Pr is retained [41]. It is clear that time, pressure and temperature can all contribute to

dipole relaxation in these polymers. For a given application and use temperature, the effect of these

parameters on the stability of the frozen-in dipole alignment should be determined.

The final determining factor for a material's degree of piezoelectric response is the ability of the

polymer to strain with applied stress. Since the remanent polarization in amorphous polymers is lost in

the vicinity of T, the use of these piezoelectric polymers is limited to temperatures well below T. This

means that the polymers are in their glassy state, and the further away from T the use temperature is, the

stiffer the polymer. This also means that measurement of the bulk physical properties is crucial both for

identifying practical applications and for comparing polymers. The electromechanical coupling

coefficient, k31 , is a measure of the combination of piezoelectric and mechanical properties of a material

(refer to Table 3). It can be calculated using the equation below:

(2)

where d31 is the piezoelectric strain coefficient, Yll is Young's modulus, e is the dielectric constant of the

polymer and e0 is the dielectric constant of free space. The piezoelectric amorphous polymer may be used

at temperatures near its Tg to optimize the mechanical properties, but not too close so as not to lose the

remanent polarization.

Table 3. Piezoelectric and mechanical properties (at 25-°C).

Eli a d31

( 109Dynes/cm 2) (pC/N)
PVC 0.34 0.7 b

PAN 1.70 1.T

PVDCN-VAc 7.06

(_-CN)APB/ODPA 2.80 0.3 °
PVDF 2.60 27.0 °

aMeasmed in our laboratories using a Rheovibron.
b[from Ref. 30].
c[from Ref. 21].
6 [from Ref.27].
5Measured in our laboratories.
6Calculatedusing equation 2.

k31 f

0.001

0.010

0.050

0.002

0.120
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Dielectric properties as predictors of piezoelectric behavior

This section addresses the origins of the dielectric contribution to the piezoelectric response of

amorphous polymers. The potential energy U of a dipole _t at an angle 0 with the applied electric field is

U = g E cos 0. Using statistical mechanics and assuming a Boltzman's distribution of the dipole

energies, the mean projection of the dipole moment, <_t>E , in the direction of the applied electric field is
obtained.

< PE > _ coth pEp kT

p kT pE
(3)

This is the Langevin equation which describes the degree of polarization in a sample when an electric

field, E, is applied at temperature T. Experimentally, a poling temperature in the vicinity of T is used to
maximize dipole motion. The maximum electric field which may be applied, typically 100 MV/m, is

determined by the dielectric breakdown strength of the polymer. For amorphous polymers _t E / kT <<1,

which places these systems well within the linear region of the Langevin function. The following linear

equation for the remanent polarization results when the Clausius Mossotti equation is used to relate the

dielectric constant to the dipole moment [42].

Pr = Aee 0Ep (4)

It can be concluded that remanent polarization and hence piezoelectric response of a material is

determined by Ae, making it a practical criterion to use when designing piezoelectric amorphous

polymers. The dielectric relaxation strength, Ae may be the result of either free or cooperative dipole

motion. Dielectric theory yields a mathematical way of examining the dielectric relaxation due to free

rotation of the dipoles, Ae. The equation incorporates Debye's work based on statistical mechanics, the

Clausius Mossotti equation, and the Onsager local field and neglects short range interactions [43]

Aec.Zc.Za,ed- Np2 n2+2 2 3e(0) )2
3kreo (----7--) (2e(0)+n 2

(5)

N is the number of dipoles per unit volume, k is the Boltzmann constant, e(0) is the static dielectric

constant and n is the refractive index. If the experimental value of AE (Aenleasui_)agrees with the theoretical

value of Ae (Aec_cula_d),then the material exhibits free dipolar motion. Table II shows that in polymers

such as PAN, VAc, PVC, PPEN, and ([3-CN) APB/ODPA the dielectric relaxation strength corresponds to

free dipolar motion since Aec_ac_l_ted and AEm..... d are in agreement. This table also shows that for the

copolymer PVDCN/VAc, AEc_ac_l_ted = 30 while AEme_sm_ =125 [25,26]. This large discrepancy in the values

of Ae is indicative of cooperative motion of several CN dipoles within the locally ordered regions of the

polymer. Cooperativity means that instead of each dipole acting independently, multiple CN dipoles

respond to the applied electric field in a unified manner. When x dipoles act cooperatively, the number
density of dipoles decreases by 1/x yet the effective dipole moment increases by x _ to yield a large

dielectric relaxation strength. Intramolecular and/or intermolecular interactions between individual

dipoles may be responsible for this particular phenomenon [25]. Such interactions are manifested in the

existence of paracrystalline regions within the PVDCN/VAc polymer [27]. The large relaxation strength
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exhibitedby PVDCN/VAcgivesit the largestvalueof Pr(TableII) andhenced_x(TableIII) of all the
amorphouspolymers. Althoughthe existenceof cooperativedipole motion clearly increasesthe
piezoelectricresponseof amorphouspolymers,the mechanismsby which cooperativitycan be
systematicallyincorporatedinto thepolymerstructureremainunclearat this time. Finally,TableII
demonstratestheefficiencywithwhichpolarizationmaybe impartedinto thesample.Thepolymers
whichexhibitfreedipolarmotionshowrelativelylow ratiosof Pr/ Pu (10-30%) which indicates low

dipole orientation, while the ratio of Pr / Pu for PVDCN/VAc polymer is as high as 60%. It is noted that in
Table II, Pr is measured using the previously mentioned TSC method. As a result, Pr could include space

charge effects as well as dipolar reorientation. However, for all the amorphous polymers of Table II

except PVDCN-VAc, Pr measured was seen to vary linearly with Ep, which is an indication that space
charge effect is negligible since space charge polarization varies nonlinearly with the poling field. Also

for these polymers, Pr measured is of the order of Pr given by equation (4), again indicating a linear
relationship.

Designing an amorphous polymer with a large dielectric relaxation strength and hence piezoelectric

response would require the ability to incorporate highly polar groups at high concentrations and

cooperative dipole motion.

Mechanical and electromechanical properties

Mechanical properties are often overlooked when investigating piezoelectric polymers. It is important

to note that the piezoelectric response is a result of the coupling between the mechanical and dielectric

properties in an amorphous polymer. The piezoelectric coefficient, d, is defined as

d_lOQ
A o3-f E:0,v (6)

where Q is the charge per unit area displaced through a closed circuit between two electrodes, T is the

applied stress, A is the area of the electrodes, and E is the applied field. This equation is used for the

direct measurement of the 631 piezoelectric coefficient by stressing the polymer in the plane of the film,

and measuring the charge that forms on the electrodes under zero field. Figure 4 shows the Young's

modulus, Y' 11 as a function of temperature. A decrease in the modulus of the four amorphous polymers,
PVDCN-VAc, unstretched PAN, PVC, and ([3-CN) APB/ODPA, occurs in the region of the glass

transition. Figure 5 presents d31 as a function of temperature for several piezoelectric polymers. As the

polymers approach their respective glass transition temperatures, 631 increases due to the decrease in the
modulus. The trend continues until the thermal energy randomizes the molecular dipoles to yield a

decrease in d31 as shown for PAN which has a T = 90 °C. The effect of the mechanical properties on the
piezoelectric response is also evident by comparing two polymers with comparable remanent

polarizations, PVC, and ([3-CN) APB/ODPA. The lower modulus (higher compressibility) of PVC

results in a larger piezoelectric response relative to ([3-CN) APB/ODPA. It is important to note that data

for identical processing conditions for the various polymers (Ep, tp and Tp) is not readily available in the
literature. This type of data would be very useful for a comparative analysis of the relative effects of

mechanical and dielectric properties on the piezoelectric response.

Stretching can also have an effect on the piezoelectric coefficient of a polymer as shown for PAN in

Figure 5. The increase in d_l with stretching has both mechanical and polarization contributions.

Stretching in the 1-direction aligns the chains in the plane of the film, which results in an increase in the
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compressibilityin the3-direction.Thischainalignmentalsofacilitatesdipoleorientationin responseto
anappliedelectricfield[39,40]whichresultsin ahigherPrthanisachievableinunstretchedPAN.

Figure6stressestheimportanceof therelativeeffectof thetemperatureonthepiezoelectricactivity.
AlthoughfromFigure5,PAN(stretched)lookedlikeit outperforms([3-CN)APB/ODPA,acloserlookof
Figure6 showsthatat70°CbelowT, d31 of PAN is 1.7 pC/N whereas that of ([3-CN) APB/ODPA is 5

pC/N. It is clear that the amorphous piezoelectric polymers have to be used below their T as PAN

quickly depolarizes as T is approached. This is in contrast to PVDF (and other semicrystalline polymers)
which are used well above their T 's.

g

The coupling between mechanical and dielectric properties is also evident in the hydrostatic

piezoelectric coefficient, d_,which is given by [33]:

d_= -[3 Ae e0e= Ep/3 (7)

As seen in equation 7, both the mechanical properties (through the compressibility, [3) and the

dielectric properties (represented by Ae)affect the piezoelectric coefficient. Figure 7a presents the

mechanical and electrical properties as a function of temperature for ([3-CN) APB/ODPA. The

compressibility of ([3-CN) APB/ODPA increases slightly with temperature until T is reached. The
remanent polarization is relatively stable until about 50 degrees below the glass transition at which point

it decreases due to dipole randomization. Consequently as shown in Figure 7b, d h increases slightly with

temperature prior to the onset of depolarization.

Summary

This review has brought together the dielectric theory and the mechanical properties which define the

piezoelectric response in amorphous polymers. The basic requirements for designing an amorphous

piezoelectric polymer are the presence and concentration of dipoles, the ability to orient these dipoles and

to lock them in this alignment, and the ability to sufficiently strain the polymer. Calculating the ultimate

polarization Pu is a good starting point when designing piezoelectric amorphous polymers. A primary

weakness of amorphous polymers is poor dipole alignment during poling (low P_P value). This would

be overcome by incorporating cooperativity such as the case of PVDCN-VAc. Until this phenomenon is

understood where the polymer structure may be engineered to include cooperativity, incremental steps are

being made to improve the response by incorporating large dipoles (primarily CN) at high concentrations.
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